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Part III.     Fluid transport 
        (pressure driven microfluidics) 



Hydrostatic pressure 

Electrokinetics 
 Electro osmose  (mouvement de liquides par un champ électrique)  
 Electrophorèse (mouvement de particules sous l’influence d’un champ électrique)  
 Dielectrophorèse 
Capillary pumps 

Lab On Chip  fluid transport 



Lab On Chip  fluid transport 
Fluid transport : Fluid mechanics at small scale 

What are the laws that 
govern these flows at small 
scale? 
Pressure/flow relations? 

Navier Stokes :   
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Pressure driven microfluidics
Pressure  
sources 

Controllable 
(On/Off, amplitude) 

Hydraulic 

On chip 
 Thermal expansion,  
 evaporation,  
 micropump  

Off chip  
 macropump,  
 syringe,  
 finger push, ..  

Constant 
On chip (osmotic) 
Off chip (pressure reservoir)  

Pneumatic 

On chip  
 liquid evaporation, ` 
 micropump  

Off chip  
 macropump,  
 syringe,  
 finger push, .



Pumps
Macroscopic pumps (off chip)  

Syringe pushers 

Peristaltic 

Membrane

Pressure driven microfluidics

Image : blue white industries

Image : KDscientific



Pressure controllers (off chips)  
Elveflow 
Fluigent

Pumps
Pressure driven microfluidics



Integrated Pumps
Pressure driven microfluidics



Valves : actives, passives (requires energy or not)  
Normally On / Off  

Leakage 
Dead volume 
Response time 
Reliability 
Biocompatibility 
Resistance 
 

Valves



Valves
Quake valves 
 



Valves
Examples 
 

Folch	lab



Valves
Examples 
 

UCSF	Abate	Lab



Lab On Chip  fluid transport 
Fluid transport : Fluid mechanics at small scale 

Navier Stokes equation    
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Fluidic particle 
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A	vectorial	field

Divergence	of	vector	A	is	the	scalar	product	of	
vector	Nabla	by	vector	A

A	function	F
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Math Reminders 
Divergence and gradients



Math Reminders 
Divergence and gradients
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Laplacien

Vector	Laplacien
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Mass acceleration

Analog to 

F visquousF pressure
weight

Navier Stokes equation
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Dimensionless numbers



Navier Stokes equation



Reynolds Number (1883)

Osborne Reynolds  
( August 23, 1842 in Belfast - February 21, 1912 in 
Watchet (England)) is an engineer and Irish physicist who 
made important contributions to hydrodynamics and fluid 
dynamics , most notably the introduction of number 
Reynolds in 1883 .



Reynolds numbers represented the ratio of momentum forces to viscous forces  

  

It is used to label the nature of the flow: laminar, transient or turbulent

  

� 

Re =
ρvL

µ

ρ 	Density
v	speed	
µ	viscosity	
L	caracteristic	length	
(diameter	of	the	pipe)

Re < 1 : Stokes regime, reversible flow, laminar, time reversal 

Laminar    1< Re < 2000    transient  

Re > 2000 turbulence.

Reynolds Number (1883)



Reynolds Number
Fluid flow over a cylinder 

Re=1 Re=10 Re=20

What is the direction of the flow? 



Turbulence

Reynolds Number



Video	:	projet	lutetium	

Turbulence

https://blog.espci.fr/lufr/



What about Re in microfluidics?  

Density:  103 Kg.m-3 

Viscosity : 10-3 Pa.s 
Channel dimension : 100µm 
Speed: 100µm.s-1 

Re=10-2<<1
At low Reynolds number, inertia is negligible, flows are 
reversibles and perfectly laminar, it is the design only that 
governs the flow

Reynolds Number



Jean Léonard Marie Poiseuille (April 22 , 1797, December 26, 1869 , Paris ) 
was a French physicist and physician , graduated from the Ecole Polytechnique

Movement of liquids in tubes with small diameters

Ph.D « Recherches sur la force du cœur aortique », 
1828

Poiseuille’s law

Also known for the Hagen–Poiseuille equation



Problem :  

- The fluid flow is parallel to the walls  
- Friction at walls implies that at macroscopic scales the liquid speed is null (non sliping 
condition)  
- Pressure doesn’t change in the section of the flow 
- Laminar flow Re < 2000

L

z

Solving of the problem with the Navier Stokes 
equation for an incompressible fluid

What is the liquid velocity distibution 
along the section? 

pe ps

Poiseuille’s law
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Navier Stokes equation

Stokes equation
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In steady state, for low Reynolds number :

for an uncompressible fluid, 
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Neglecting weigth (microfluidics) 

    

� 

∂p
∂x

= µ ∂ 2u( z)
∂z2

If the section is small compared with length, Pressure P is 
only function of x and velocity distribution is function of z  
Equation becomes : 

Poiseuille flow
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Pressure Velocity

Poiseuille flow
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Hydro resistance increases when the section decreases 
(power 4) 
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zPoiseuille flow
Maximum velocity

Mean velocity
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Poiseuille flow
Hydro resistance for different sections 
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The sum of flow rate is conserved at a junction 
Equivalent to Kirchhoff's circuit laws « The current entering 
any junction is equal to the current leaving that junction » 

The sum of all the pressure drop around a loop is equal to 
zero    
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i=2

n

∑ = 0

Microfluidic Network
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Microfluidic Network



Microfluidic Network
Electric Circuit    Hydraulic Circuit 

U Battery     P Pump (pressure controller)  

I Current generator   Q Pump (syringe pusher) 

ΔU Potential difference  ΔP  pressure difference 

I Current      Q flow rate 

i current density    v flow speed 

R Resistance    Rh hydro resistance 

C Capacitance    Ch compliance 

L Inductance    Fluid Inertia (negligible) 

Power ΔUI     power ΔPQ   



Microfluidic Network : application
Stokes trap for multiplexed particle manipulation and 
assembly using fluidics 

Anish Shenoya, Christopher V. Raob, and Charles M. Schroederb, 

PNAS, vol. 113 no. 15

Using a six-channel microfluidic device, scientists can 
alter the flow in the device in such a way that they trap 
and manipulate two particles at the same time.



Recirculation



Tesla valve



Flow visualization
Staining 
Micro particle image velocimetry 
Doppler 
holography



Couette flow

Maurice Marie Alfred Couette, Born january 9, 1858 in Tours, France, and died August 18, 
1943, is a French Physicist whose work focused mainly on fluid mechanics and especially on 
rheology . He defended his thesis for the doctorate of science on friction in liquids in the 
laboratory of physical research of the Faculty of Sciences of Paris . His name is primarily 
associated with Couette flow but also for the cylinder viscometer that bears his name . 
 

A film of water on a flat substrate 
Initial velocity  ux(h)=v0 

What is the velocity distribution ux(z) ?  
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Steady	state	Navier	flow
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Boundary	conditions
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Couette flow



Microfluidic circuits printed on a 
Compact disc 
Use of centrifuge force induced by the 
rotation to move liquids 
		

	

Centrifuge microfluidics : Lab On a CD 
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