Lab on a Chip and Microfluidics

Benoît CHARLOT

http://www.ies.univ-montp2.fr/~charlot/

Part III.

Fluid transport (pressure driven microfluidics)

Lab On Chip fluid transport

Hydrostatic pressure

Electrokinetics

Electro osmose (mouvement de liquides par un champ électrique) Electrophorèse (mouvement de particules sous l'influence d'un champ électrique) Dielectrophorèse

Capillary pumps

Lab On Chip fluid transport

Fluid transport : Fluid mechanics at small scale

What are the laws that govern these flows at small scale? Pressure/flow relations?

Navier Stokes :

 $\rho \left(\frac{\partial \vec{u}}{\partial t} + \left(\vec{u} \cdot \vec{\nabla} \right) \vec{u} \right) = \rho \vec{g} - \vec{\nabla} p + \mu \Delta \vec{u}$

Pressure driven microfluidics

Pressure driven microfluidics

Pumps

Macroscopic pumps (off chip)

Syringe pushers

Peristaltic

Membrane

Image : KDscientific

Image : blue white industries

Pumps

Pressure driven microfluidics

Integrated Pumps

Valves

Valves : actives, passives (requires energy or not) Normally On / Off

Leakage Dead volume Response time Reliability Biocompatibility Resistance

Valves

Examples

Folch lab

Valves

Examples

UCSF Abate Lab

Lab On Chip fluid transport

Fluid transport : Fluid mechanics at small scale

Fluidic particle

Navier Stokes equation

$$\rho \left(\frac{\partial \vec{u}}{\partial t} + \left(\vec{u}.\vec{\nabla} \right) \vec{u} \right) = \rho \vec{g} - \vec{\nabla} p + \mu \Delta \vec{u}$$

Math Reminders

Divergence and gradients

A vectorial field

A function F

$$div\vec{A} = \vec{\nabla}.\vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

Divergence of vector A is the scalar product of vector Nabla by vector A

Math Reminders

Divergence and gradients

Laplacien

$$\Delta F = div(g\vec{r}adF) = \nabla^2 F = \frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2} + \frac{\partial^2 F}{\partial z^2}$$

 $= \left(\frac{\partial^2 A_x}{\partial x^2} + \frac{\partial^2 A_x}{\partial y^2} - \frac{\partial^2 A_y}{\partial y^2}$ **Vector Laplacien** ΔA_{y} $\vec{\Delta}\vec{A} = \vec{\nabla}^2\vec{A} =$ $\left| \begin{array}{cc} \partial x^{2} & \partial y^{2} \\ \frac{\partial^{2} A_{z}}{\partial x^{2}} + \frac{\partial^{2} A_{z}}{\partial x^{2}} \\ \frac{\partial^{2} A_{z}}{\partial x^{2}} + \frac{\partial^{2} A_{z}}{\partial x^{2}} \\ \end{array} \right|$

Navier Stokes equation

$$\rho \left(\frac{\partial \vec{u}}{\partial t} + (\vec{u}.\vec{\nabla})\vec{u} \right) = \rho \vec{g} - \vec{\nabla} p + \mu \Delta \vec{u}$$

$$\int_{\text{weight}} F_{\text{pressure}} F_{\text{visquous}}$$
Mass acceleration

Analog to
$$\sum \vec{F} = m\vec{a}$$

Dimensionless numbers

Re	Reynolds	$\rho U_0 L_0$	inertial/viscous
Pe	Péclet	$\frac{\eta}{U_0L_0}$	convection/diffusion
Ca	capillary	$\frac{D}{\eta U_0}$	viscous/interfacial
Wi	Weissenberg	$egin{array}{c} oldsymbol{\gamma} \ au_p \dot{oldsymbol{\gamma}} \end{array}$	polymer relaxation time/shear rate tir
De	Deborah	τ_p	polymer relaxation time/flow time
El	elasticity	$rac{ au_{ ext{flow}}}{ heta_p oldsymbol{\eta}} \ rac{ au_p oldsymbol{\eta}}{ heta h^2}$	elastic effects/inertial effects
Gr	Grashof	$\rho U_b L_0$	Re for buoyant flow
Ra	Rayleigh	$rac{\eta}{U_b L_0}{D}$	Pe for buoyant flow
Kn	Knudsen	$\frac{\beta}{I}$	slip length/macroscopic length
		L_0	

Navier Stokes equation

Navier-Stokes Equations

Describe the flow of incompressible fluids.

Reynolds Number (1883)

Osborne Reynolds

(August 23, 1842 in Belfast - February 21, 1912 in Watchet (England)) is an engineer and Irish physicist who made important contributions to hydrodynamics and fluid dynamics , most notably the introduction of number Reynolds in 1883 .

Reynolds Number (1883)

Reynolds numbers represented the ratio of momentum forces to viscous forces

It is used to label the nature of the flow: laminar, transient or turbulent

$$R_e = \frac{\rho v L}{\mu} \qquad \begin{array}{c} \rho \text{ Density} \\ v \text{ speed} \\ \mu \text{ viscosity} \\ L \text{ caracteristic length} \\ (\text{diameter of the pipe}) \end{array}$$

 $R_e < 1$: Stokes regime, reversible flow, laminar, time reversal

Laminar $1 < R_e < 2000$ transient

 R_e > 2000 turbulence.

Reynolds Number

What is the direction of the flow?

Fluid flow over a cylinder

Reynolds Number

Re=1

Re=41

Re=2000

Reference: Van Dyke, Album of Fluid Motion

Turbulence

Turbulence

Video : projet lutetium https://blog.espci.fr/lufr/

Reynolds Number

What about R_e in microfluidics?

Density: 10³ Kg.m⁻³ Viscosity : 10⁻³ Pa.s Channel dimension : 100µm Speed: 100µm.s⁻¹

R_e=10⁻²<<1

At low Reynolds number, inertia is negligible, flows are **reversibles** and perfectly **laminar**, it is the design only that governs the flow

Poiseuille's law

Jean Léonard Marie Poiseuille (April 22 , 1797, December 26, 1869 , Paris) was a French physicist and physician , graduated from the Ecole Polytechnique

Movement of liquids in tubes with small diameters

Ph.D « Recherches sur la force du cœur aortique », 1828

Also known for the Hagen–Poiseuille equation

Poiseuille's law

Problem :

- The fluid flow is parallel to the walls
- Friction at walls implies that at macroscopic scales the liquid speed is null (non sliping condition)
- Pressure doesn't change in the section of the flow
- Laminar flow $R_e < 2000$

What is the liquid velocity distibution along the section?

Solving of the problem with the Navier Stokes equation for an incompressible fluid

Navier Stokes equation for an uncompressible fluid,

$$\rho \left(\frac{\partial \vec{u}}{\partial t} + \left(\vec{u} \cdot \vec{\nabla} \right) \vec{u} \right) = \rho \vec{g} - \vec{\nabla} p + \mu \Delta \vec{u}$$

Stokes equation In steady state, for low Reynolds number :

$$\rho \left(\frac{\partial \vec{u}}{\partial t} + \left(\vec{u}, \vec{\nabla} \right) \vec{u} \right) = \rho \vec{g} - \vec{\nabla} p + \mu \Delta \vec{u}$$

$$\rho \vec{g} - \vec{\nabla} p + \mu \Delta \vec{u} = 0$$

Neglecting weigth (microfluidics)

$$\vec{\nabla}p = \mu \Delta \vec{u}$$

If the section is small compared with length, Pressure P is only function of x and velocity distribution is function of z Equation becomes :

$$\frac{\partial p}{\partial x} = \mu \frac{\partial^2 u(z)}{\partial z^2}$$

Boundary conditions

Pressure

p(x)

Velocity

$$u(r) = 0$$

$$u(r) = 0$$

$$u(-r) = 0$$

$$P(x) = \frac{p_s - p_e}{L} x + p_e \qquad u(z) = \frac{p_s - p_e}{4\mu L} r^2 \left(1 - \left(\frac{z}{r}\right)^2 \right)$$

Maximum velocity

$$v(z) = v_{\max} \left(1 - \frac{z^2}{r^2} \right)$$

(

Mean velocity

$$v_m = \frac{v_{\text{max}}}{2} = \frac{R^2}{8\mu} \frac{dp}{dx} = \frac{Q}{S}$$

$$\Delta p = 8\mu \frac{L}{Sr^2}Q = 8\mu \frac{L}{\pi r^4}Q$$

$$\Delta p = R_{hydro}Q$$

 $U = R_{elec}I$

Hydro resistance increases when the section decreases (power 4)

Hydro resistance for different sections

circle		${8\over\pi}\eta L {1\over a^4}$
ellipse	b a	$\frac{4}{\pi} \eta L \frac{1 + (b/a)^2}{(b/a)^3} \frac{1}{a^4}$
triangle	a a a	${320\over\sqrt{3}}\eta L{1\over a^4}$
two plates	h w	$12 \ \eta L \ rac{1}{h^3 w}$
rectangle	$egin{array}{c} h & & \\ & w & \end{array}$	$\frac{12\eta L}{1-0.63(h/w)}\;\frac{1}{h^3w}$
square	$h \begin{bmatrix} h \\ h \end{bmatrix} h$	$\frac{12\eta L}{1-0.917\times 0.63}\;\frac{1}{h^4}$

Microfluidic Network

The sum of flow rate is conserved at a junction Equivalent to Kirchhoff's circuit laws « The current entering any junction is equal to the current leaving that junction »

$$\sum_{i=2}^{n} \left(P_i - P_{i-1} \right) = 0$$

 $\sum Q_e = \sum Q_s$

The sum of all the pressure drop around a loop is equal to zero

Microfluidic Network

Microfluidic Network

Electric Circuit

U Battery

I Current generator

 $\Delta \boldsymbol{U} \text{ Potential difference}$

Current

 ${\bf i}$ current density

R Resistance

C Capacitance

L Inductance

Power ΔUI

Hydraulic Circuit

P Pump (pressure controller)

Q Pump (syringe pusher)

 $\Delta \mathbf{P}$ pressure difference

Q flow rate

 \boldsymbol{v} flow speed

 $\mathbf{R}_{\mathbf{h}}$ hydro resistance

 $\boldsymbol{C_h}$ compliance

Fluid Inertia (negligible)

power ΔPQ

Microfluidic Network : application

Stokes trap for multiplexed particle manipulation and assembly using fluidics

Anish Shenoya, Christopher V. Raob, and Charles M. Schroederb, PNAS, vol. 113 no. 15

Fig. 2. Streamline topologies in a six-channel microdevice from experiments and computation. (*A* and *B*) Schematic of the relative magnitude and direction of the flow rates for generating the streamline topologies in the figures below. Arrows pointing inwards represent flow entering the device, and arrows pointing outwards represent flow exiting the device. The size of the arrows signifies the relative magnitude of the flow rates. (*C*) Experimental streamlines showing the linked-arms topology, generated when the flow rates have a specific symmetry. Two stagnation points are clearly visible. (*D*) Experimental streamlines showing the non–linked-arms topology, generated if the symmetry in *C* is broken. (*E* and *F*) Streamline topologies obtained from numerical solution of Eq. **2**. For display, streamlines emanating from inlet channels are plotted using distinct colors.

Using a six-channel microfluidic device, scientists can alter the flow in the device in such a way that they trap and manipulate two particles at the same time.

Recirculation

Tesla valve

Fig. 3: Flow development in the unimpeded direction

Flow visualization

Staining Micro particle image velocimetry Doppler holography

T Channel - Local Fluid Speed

Position

Couette flow

A film of water on a flat substrate Initial velocity $u_x(h)=v_0$

What is the velocity distribution $u_x(z)$?

Maurice Marie Alfred Couette, Born january 9, 1858 in Tours, France, and died August 18, 1943, is a French Physicist whose work focused mainly on fluid mechanics and especially on rheology. He defended his thesis for the doctorate of science on friction in liquids in the laboratory of physical research of the Faculty of Sciences of Paris. His name is primarily associated with Couette flow but also for the cylinder viscometer that bears his name .

Couette flow

$$\rho \left(\frac{\partial \vec{u}}{\partial t} + (\vec{u}.\vec{\nabla})\vec{u} \right) = \rho \vec{g} - \vec{\nabla} p + \mu \Delta \vec{u}$$
$$\left(\vec{u}.\vec{\nabla} \right) \vec{u} = 0$$

Steady state Navier flow

$$\rho \vec{g} - \vec{\nabla} p + \mu \Delta \vec{u} = 0$$

$$\frac{\partial^2}{\partial z^2} u_x(z) = 0$$

$$u_x(z) = az + b$$

Boundary conditions

$$u_x(0) = 0$$
$$u_x(h) = u_0$$

$$u_x(z) = \frac{u_0 z}{h}$$

Centrifuge microfluidics : Lab On a CD

Microfluidic circuits printed on a Compact disc Use of centrifuge force induced by the rotation to move liquids

Lab on a Chip and Microfluidics

Benoît CHARLOT

http://www.ies.univ-montp2.fr/~charlot/

