DeepLearn
2020-2023

DeepLearn

Approche « Deep Learning » pour l’analyse de signaux ultrasonores

Responsable :

Emmanuel LE CLEZIO

Équipes de recherche :

ACO

OBJECTIF  :  Développer des approches de Deep-Learning pour le traitement automatique de signaux ultrasonores – Application à l’imagerie haute résolution.

Les signaux ultrasonores hautes fréquences sont soumis à de fortes atténuations conduisant à une dégradation du SNR et à des difficultés d’identification réduisant la qualité des images.

Le projet DeepLearn vise au développement de méthodes d’intelligence artificielle et plus précisément de Deep Learning permettant de repousser les limites actuelles de détection basées sur des méthodes conventionnelles de traitement du signal.

Problématique scientifique :

Développement et déploiement d’outils de traitement du signal permettant d’optimiser :
  • Les rapports SNR,
  • L’identification des temps de vols,
de signaux ultrasonores hautes-fréquences.

Projets de recherche ACO

MDTGB
2021-2024

MDTGB

Micro-dispositif pour la détection de trace de gaz

Financé par :

UHTBM
2021-2024

UHTBM

Dos Amortisseurs Haute température

Financé par :

FWIAM
2020-2023

FWIAM

Caractérisation des matériaux anisotropes par inversion numérique en forme d’onde complète

Partenaires :

Financé par :